
Automated Environment Generation for Software Model Checking

Oksana Tkachuk, Matthew B. Dwyer
Department of CIS

Kansas State University, USA
oksana@cis.ksu.edu

Corina S. P̆as̆areanu
Kestrel Technologies
Moffett Field, USA

pcorina@email.nasa.arc.gov

Abstract

A key problem in model checking open systems is en-
vironment modeling (i.e., representing the behavior of the
execution context of the system under analysis). Software
systems are fundamentally open since their behavior is de-
pendent on patterns of invocation of system components and
values defined outside the system but referenced within the
system. Whether reasoning about the behavior of whole
programs or about program components, an abstract model
of the environment can be essential in enabling sufficiently
precise yet tractable verification.

In this paper, we describe an approach to generating en-
vironments of Java program fragments. This approach in-
tegrates formally specified assumptions about environment
behavior with sound abstractions of environment implemen-
tations to form a model of the environment. The approach is
implemented in the Bandera Environment Generator (BEG)
which we describe along with our experience using BEG
to reason about properties of several non-trivial concurrent
Java programs.

1 Introduction

Model checking the source code of realistic software sys-
tems is a challenge and is currently the topic of a large num-
ber of research efforts (e.g., [7, 16, 30]). The primary chal-
lenge lies in overcoming the enormous cost of model check-
ing which grows as the product of the number of indepen-
dent program components, such as, threads of control. Most
researchers agree that abstraction is the key to overcom-
ing this challenge. Research on abstracting the data state
of programs using techniques such as predicate abstraction
(e.g., [3]) are steadily increasing the size and complexity of
programs that can be efficiently analyzed. A complemen-
tary approach involves decomposing the program, check-
ing properties of the components, and then composing the
analysis results to draw conclusions about the overall be-
havior of the program. A variety of forms of compositional
or modular verification have been studied (e.g., [18]) but

they have not been adapted for software written in modern
programming languages.

In this paper, we describe automated tool support for
adapting existing software model checking frameworks to
provide a restricted form of modular verification. Specif-
ically, we consider decomposition of a Java program into
two parts: aunit under analysis(henceforth called aunit)
and itsenvironment. A unit is any collection of Java classes
and its environment consists of the classes with which the
unit interacts through the unit’sinterface1. The unit’s source
code will be the subject of verification along with an ab-
stract model of the environments externally observable be-
havior. This environment model is derived from specifica-
tions written by the user or from the results of analyzing
source code that implements environment components. Ex-
isting abstraction techniques [9] may be applied to local unit
data and to the data that flows between the unit and environ-
ment. The resulting abstracted unit and environment may
then be analyzed by existing Java model checking frame-
works such as JavaPathFinder [30] and Bandera [7].

Thorough treatment of the mechanisms by which the
environment may influence the behavior of the unit is es-
sential for sound reasoning. The environment may in-
fluence the unit’scontrol (e.g., by invoking methods in
the unit’s interface or influencing synchronization relation-
ships) anddata (e.g., by passingenvironment datato the
unit or by modifyingunit data that may flow to the en-
vironment). By unit data we mean objects ofunit type
(i.e., the object’s type is included in the unit). Java classes
are broken into two categories depending on whether
they hold a thread of control. In Java, a class contain-
ing the main method or classes that extend(implement)
java.lang.Thread(java.lang.Runnable) are
labeledactive, the rest are termedpassive. For consistency,
we reuse terminology from previous work [10], and call the
active environment classesdriversand passive environment
classesstubs. Our approach provides mechanisms by which
a wide-range of driver and stub behaviors may be safely ap-

1We treat interfaces in Java as classes which comprise a unitinterface
in our terminology.

proximated.
Experience has shown that the developing environment

models for software model checking that are sufficiently
precise to enable effective reasoning yet not so over-
restrictive that they mask faulty system behaviors is a sig-
nificant challenge [19, 20]. Developing such an environ-
ment may require an understanding of unstated assumptions
about system usage and software interfaces, careful coding
to ensure that those assumptions are satisfied in the least
restrictive way, and evaluation through model checking of
the environment and the unit under analysis. For this rea-
son, we believe thatmultiple sources of information should
be combined to generate environment modelsthat reflect a
broad range of realistic execution contexts for a unit under
analysis. BEG is aimed at both minimizing the effort re-
quired to generate environment models and increasing their
fidelity with respect to assumptions about environment be-
havior. Specifically, BEG currently automates: thediscov-
eryof the unit-environment interface based on minimal user
supplied information, the synthesis of environment drivers
from specifications of the sequences of program actions
they may perform, and the synthesis of environment stubs
from analysis of the possible program actions executed by
existing environment code. Program actions in our setting
are statements that may directly influence the data or control
state of the unit.

We envision two ways in which environment generation
tools can be used effectively: during component develop-
ment as an adjunct to traditional unit testing approaches and
during program validation to enable more efficient reason-
ing and to model non-source-code components.

During component developmentindividual classes, or
groups of classes, that constitute cohesive functional com-
ponents, perhaps structured as Java packages, may become
code complete when the code they interact with (e.g., client
code) has not been written. In this setting, the class(es) form
a unit and the missing classes they interact with form the
environment. To enable effective checking, we expect that
developers will need to encode assumptions about the be-
havior of the environment at the unit’s interface. They will
need to account for both control and data effects. These as-
sumptions can subsequently be checked against implemen-
tations of the missing environment classes as they become
code complete.

During program validationwhen considering a complete
application one may break the system into parts to enable
more efficient checking of program properties. In this set-
ting, the user selects classes that comprise the unit under
analysis and an environment model is automatically ex-
tracted. For applications that interact with external entities,
such as embedded control software processing data from
hardware devices, developers may incorporate assumptions
about those interactions to generate a representative model

BEG

Assumption Translator

Code Generator
Environment

Java
Model
Checking
Tools

Environment Effects
Analyzer

Scope and Flow−based

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

Stubs

Generated

Environment

Assumption

Drivers

Under Analysis
Unit

Under Analysis
Unit

Under Analysis
Unit

Under Analysis
Unit

Figure 1. BEG Architecture

of the external environment.
Our approach builds on existing work in assume-

guarantee reasoning and in program flow analysis. The ap-
proach is implemented in the Bandera Environment Gen-
erator (BEG) which supports modular checking of Java
source code. Our previous work [28] presented the de-
tails of the program analysis and synthesis techniques used
to model the data effects of environment implementations.
This paper focuses on control effects for active environ-
ment components and makes several contributions, includ-
ing (i) defining a language of program actions with which to
specify environment behaviors; (ii) adapting existing spec-
ification forms for defining patterns of environment behav-
ior; (iii) synthesing source code models of environment be-
havior that can be processed by existing model checking
frameworks; and (iv) a preliminary evaluation of the effec-
tiveness of BEG in supporting modular source-code model
checking. While BEG supports the checking of Java source
code, the fundamental concepts it embodies are much more
broadly applicable.

The next Section describes our basic approach and an
example that is used throughout the paper. Section 3 de-
scribes the formalisms for specifying environment behav-
ior and generating environment models as Java source code.
Section 4 discusses the soundness of environments relative
to specified assumptions. An overview of several case stud-
ies using BEG is presented in Section 5. We then compare
and contrast our work to existing research in Section 6 and
conclude in Section 7.

2 Basic Approach and An Example

The fundamental assumption in BEG is that precise rea-
soning about the unit is desired, but thatsomeprecision in
modeling the environment may be sacrificed. Our approach
is to safelyapproximate environment data and the environ-

2

ment statements that may influence the unit’s behavior.
Modelling the effect of environment statements is

achieved by a combination of user specifications and analy-
sis of Java source code. Figure 1 shows the architecture of
BEG. BEG accepts multiple information sources for gener-
ating an environment model. Users identify the unit under
analysis by naming the classes, interfaces and packages that
comprise the unit. Users provide specifications of theiras-
sumptionsabout the patterns of unit method calls and unit
field definitions that the environment may make. If an im-
plementation of the environment is available, BEG may be
used to automatically extract the environment assumptions
using static analysis techniques. Thus, environment mod-
els can be synthesized from a combination of assumption
specifications and the results of analyzing implementations.
Those models are encoded as Java source code using a col-
lection ofmodelling primitivesto express the atomic execu-
tion of environment actions, to encode non-determinism in
the environment, and to reflect the approximation in analy-
sis results.

We illustrate our approach on a small publish-
subscribe program implemented using Java’sObserver
and Observable library components. Figure 2 shows
classSubject , which is an observable; a fieldobs of type
Buffer , shown on the left side of Figure 4, is a container
for Watcher s that are registered for theSubject . The
Watcher class contains two bookkeeping fields that record
the total number of registrationattempts and the num-
ber of aborts . Suppose, we are interested in reasoning
about whether “Only registeredWatchers are notified of
Subject updates”. This can be specified in several ways,
but one approach is to test whetherregistered field of
Watcher s is true at the point where aSubject calls
update() .

2.1 Interface Discovery

The user designates the unit under analysis by naming a
collection of Java classes whose properties need to be veri-
fied. In general, selection of the classes in the unit is driven
by the properties that one wants to reason about.

These classes are analyzed to determine: the fields of
unit supertype classes that are referenced in the unit and
the non-unit classes that are directly referenced by the unit.
Any referenced supertypes are included in the unit. Directly
referenced non-unit classes define theunit interface.

For our example and the mentioned property,
Subject and Watcher should be in the unit.
Their supertypes java.util.Observable and
java.util.Observer and referencedBuffer are
in the environment. Note, that the actual environment
may consist of more classes due to transitive class and
method dependencies, however, BEG identifies classes

public boolean unregister(Watcher w) {
if (super .removeElement(w)) {

w.registered = false ; return true ;
}
return false ;

}
public Watcher removeFirst() {

Watcher result = elementAtIndex(0);
removeElement(result);
return result;

}

Buffer Implementation

public boolean unregister(Watcher p0){
if (chooseBool()) p0.registered = false ;
return chooseBool();

}
public Watcher removeFirst() {

return ((Watcher)chooseClass("Watcher"));
}

Generated Environment

Figure 4. Bounded Buffer Stubs (excerpts)

that are immediately referenced in the unit. The part
of the environment that is invisible to the unit is safely
approximated.

2.2 Driver Specification and Synthesis

One may specify assumptions about sequences of
method calls and unit field definitions that the environment
may make on the unit. BEG generates a set ofdriver
threadsthat implement the most liberal model that is con-
sistent with the given assumptions. Figure 3 illustrates
an assumption with one instance ofSubject and two
Watcher s and a pair of threads whose behavior is given
by regular expressions over method names with parameter
values elided; elided parameters means that their value is
selected non-deterministically from the possible values of
the parameter type. The first thread repeatedly calls the
changeState() method on a selectedSubject and the
second calls any sequence ofadd() or delete() calls
on a selectedSubject with someWatcher .

Figure 3 also shows the generated drivers that cap-
ture the assumed behavior.Main allocates the spec-
ified instances and starts the execution of the two
threads. Thread implementations model the assump-
tion specifications by invokingmodeling primitivesthat
capture non-determinism (e.g.,chooseBool() chooses
among{true, false}, chooseInt(n) chooses among
{0, . . . , n}, and chooseClass(C) chooses among the
allocated instances of classC) [8].

2.3 Stub Analysis and Synthesis

A series of static analyses, including points-to and side-
effects analyses, are applied to determine how the environ-

3

public class Watcher implements Observer{
static public int attempts = 0;
static public int aborts = 0;
public boolean registered = false ;
public void update(Observable o, Object arg) { }

}
public class Subject extends Observable {

boolean changed = false ;
Buffer obs;
public Subject() { obs = new Buffer(); }
public void changeState() { setChanged(); notifyObservers();}
public synch... void add(Watcher o) { obs.register(o);}
public synch... void delete(Watcher o) { obs.unregister(o);}

public void notify(Object arg) {
Watcher cw;
Buffer lb = new Buffer();
synchronized (this) {

if (!changed) return ;
obs.copy(lb); changed = false ;

}
if (obs.size() != lb.size()) cw = null ;
while (!lb.isEmpty()) {

cw = lb.removeFirst(); cw.update(this , arg);}
}
protected synch... void setChanged() { changed = true ;}

}

Figure 2. Customized Observer Implementation

environment {
instantiations { 1 Subject; 2 Watcher; }
regular assumptions {

(changeState())*;
(add() | delete())*;

}
}

public class EnvDriver {
public static void main(java.lang.String[] param0){

Subject s0 = new Subject();
Watcher w0 = new Watcher();
Watcher w1 = new Watcher();
new T0(s0, w0, w1).start();
new T1(s0, w0, w1).start();

}
}

public class T0 extends java.lang.Thread {
public Subject s0;
public Watcher w0, w1;
public T0(Subject p0, Watcher p1, Watcher p2){

s0 = p0; w0 = p1; w1 = p2;}
public void run(){

while (Bandera.chooseBool()) s0.changeState();}
}
public class T1 extends java.lang.Thread { ...

public void run(){
while (Bandera.chooseBool())

switch (Bandera.chooseInt(2)){
case 0: s0.delete(Bandera.chooseClass("Watcher"));

break ;
case 1: s0.add(Bandera.chooseClass("Watcher"));

break ;}}
}

Figure 3. Assumptions and Generated Drivers

ment methods can influence the unit data [28]. In our exam-
ple, the analysis of theBuffer implementation calculates
effects of the environment on the fields ofWatcher , for
instance methodunregister may side-effect only one
field registered .

Models are generated to reflect all possible side-effects
as calculated by the preceding analyses. To safely reflect
thepossibilityof a side-effect, code is generated to execute
abstract assignmentsnon-deterministically. Figure 4 shows
the generated environment for several methods ofBuffer .
For example, the access of aWatcher instance, via call
elementAtIndex(0) , in methodunregister() is
approximated as the return of a non-deterministically cho-
sen instance ofWatcher .

2.3.1 Tool Support

This example illustrated the basic capabilities of BEG.
BEG supports the specification a wide-range of assump-
tions about environment behavior compactly using regular
expressions, temporal logic formula (defined over program
actions), and data side-effects summaries. In the absence of
specified assumptions, BEG can be configured to makerea-
sonableassumptions about the intended environment. For
example, it is assumed that the calling environment consists
of a number of unit class instances and threads (specified
on the command line) that exhibituniversalbehavior (i.e.,

they perform any sequence of calls over the methods in the
system by selecting appropriately typed class instances).

In its current form, the tools make assumptions about the
lack of divergence indefinite-blocking, and lock acquisition
in the environment. Ongoing work is extending the tools
to support the specification of behavior related to these lan-
guage aspects and the extraction of safe approximations of
such behavior from implementations. Despite these limi-
tations, the BEG toolset has been effective in supporting
modular reasoning about properties of a number of realistic
systems as discussed in Section 5.

3 Driver Specification and Synthesis

We focus in this section on the specification of the
expected behavior of environment drivers. The building
blocks of those specifications are descriptions of program
actions that may influence the control or data state of the
unit under analysis. Those program actions are then com-
bined to describe the patterns of environment behavior.

3.1 Environment Instantiation

We define aname scopewithin which environment spec-
ifications may refer to specific class instances; by default
the name scope is empty.

4

Theglobalname scope is defined by annotating instanti-
ations. In an instantiation, the number of instances allocated
of a type by the environment is given and those instances
may be named. For example, we can adapt the assump-
tion specification in Figure 3 to explicitly name the lone
Subject instance,s , and reference it regular expression.
environment {

instantiations { 1 Subject s; ... }
regular assumptions { (s.add() | s.delete())*; ... }

}

It is important to distinguish betweennamedinstances
and the set of all instances. The latter is the set of all envi-
ronment and unit allocated instances. That set forms the
universe from which non-deterministic choice primitives
over reference types are evaluated.

A local name scope can also be defined that applies to a
portion of an assumption specification. The preceding ex-
ample can be rewritten using a local name scope as:
environment {

instantiations { 1 Subject; ... }
regular assumptions {

<Subject s>:(s.add() | s.delete())*; ... }
}

By default local names are bound to a non-deterministically
selected value of the given type that holds throughout the
name scope (which is denoted explicitly by a pair of{ }
and which extends to the end of the expression by default).
Thus, they serve a function similar to universal quantifiers
in logics and their primary use is in correlating event oc-
currences (e.g., that a sequence of actions are applied to the
samereceiver object).

In these examples, there is a single instance of
Subject , thus the three specifications are semantically
equivalent. In general, this will not be the case. Lo-
cal name introduction is interpreted as non-deterministic
choice over the the set of allocated instances of the named
type, Subject in this case. Local name scopes may be
nested and may refer to additional names. For example,
<Subject x>:<Subject-x y>:... introduces two
names that are guaranteed to refer to distinct instances of
Subject . Local names may also be bound to values from
the unit. For example,<Ref x=getRef()>:x.m() in-
troduces a namex that is bound to the value returned by
a call and that is subsequently used to perform a call on
methodm() .

3.2 An Alphabet of Program Actions

Let U be the set of classes that comprise the unit under
analysis and letB denote the set of Java builtin types. We
define an alphabet of actions consisting two classes of ac-
tions: field assignments and method calls.

Assignments can be either static field assignments or as-
signments through object references of unit type. Assign-
ments are of the formr.f = rhs where:type(r) ∈ U , f is of

unit type, andrhs is either a scalar constant or>type(f), if

type(f) ∈ B, or chooseClass(type(f)) , if type(f) ∈ U .
Here>type(f) denotes any possible value oftype(f); for
scalar types the expansion of values is done implicitly via
abstraction [9]. The target of the assignment,r, is either an
introduced name,> for an appropriate type, or the name of
a class.

Method call actions are defined using standard Java syn-
tax, but where partial specification of parameters is allowed.
Consider a method in classC with signaturepublic R
m(P1 p1, P 2 p2) . We can denote the occurrence of a
call to this method with any receiver object of typeC, a
specific value,v1, for p1, and any value forp2 asm(v1,>),
wherev1 is an introduced name or a scalar. Partially speci-
fied calls may omit the receiver object or any parameter by
replacing it with>. The meaning of such a call is the set
of all calls that can be constructed by replacing> with any
legal value of the receiver or parameter type.

We note that BEG, through the process of interface dis-
covery, produces the set of program actions (i.e., public
method calls and fields at the unit-environment interface)
that can be used to define assumptions.

3.3 Specifying Patterns of Actions

Regular expressions defined over this alphabet describe a
language of actions that can be initiated by the environment.
The simplest regular expression is a single program action.
Complex environment assumptions are built up using the
standard operators for regular expressions:r; s (concatena-
tion), r|s (disjunction),r∗ (closure), andr? (one or more
occurrences ofr). Positive closure (r+), bounded iteration
(r ∗ n = r1; r2; . . . ; rn), and a generalization of bounded
iteration (r ∗ {n, m} = r ∗ n|r ∗ (n + 1)| . . . |r ∗ m) are
also supported. These expressions can appear in introduced
name scopes, where those names are referenced in the pro-
gram actions used in the expression. The syntax of these
assumptions is given in Figure??. wherea is a program
action,afun are function callactions,n andm are intro-
duced name, andt is a program type name. Legal assump-
tion specifications must also satisfy some type constraints.
Specifically, type expressions,te, may only involve types
and named variables,m, of that type;m here must refer to
a name introduced in an enclosing name scope. Similarly,
name initializations,ni, may only involve function call ac-
tions whose type is compatible with the type of the type
expression for the introduced name.

As an example,java.util.Iterator presents a
simple standard interface for generating the elements in
an instance of a container. Semantically, this interface as-
sumes that for each instance of a class implementing the
Iterator interface (denoted by the introduced namei),
all clients will call methods in an order that is consistent

5

r :== a
:== .
:== [a1, a2, . . . , an]
:== [−a1, a2, . . . , an]
:== s1; s2

:== s1|s2

:== (s)
:== s?
:== s∗
:== s+
:== s + i, j
:== < t ni >: s
:== < te n >: s

ni :== n
:== n = afun

te :== t
:== te−m

Figure 5. Assumption Syntax

with the following specification:

environment {
instantiations { k Iterator; }
regular assumptions {

[Iterator i]:i.iterator();
(i.hasNext(); i.next(); i.remove()?)*

}
}

This expresses both required sequencing of calls (e.g., a
call to iterator() must precede a call tohasNext)
and allowable optional calls (e.g., the occurrence of a single
remove() call after a call tonext()) over each instance
of Iterator .

3.4 From Regular Expressions to Code

Java models of regular expresson assumption specifica-
tions can be generated using the templates shown in Fig-
ure 6. These templates use the non-deterministic choice
constructs mentioned previously and are defined recur-
sively, usingcodeto refer to the code fragment for a given
subexpression.

One can view name scope introduction for a subexpres-
sion as prefixing a specialname bindingaction to the subex-
pression. Name scopes are supported by introducing local
variables in the body of the driverrun() method and as-
signments that non-deterministically choose an instance to
be bound to the name at the point where the name binding
action is embedded in the regular expression.

We note that much of the generated model code is in-
ternal to the environment. Internal environment states and
actions arehidden in our models by embedding them in
atomic statements. This has two consequences: internal en-
vironment behavior does not contribute to state explosion
and internal actions are elided from counter-examples mak-
ing them shorter and easier to read.

r|s → switch (chooseInt(1)) {
case 0: code(r); break;
case 1: code(s); break;

}
r; s → code(r); code(s);
r∗ → while (chooseBool()) { code(r);}
r+ → do { code(r);} while (chooseBool())
r? → if (chooseBool()) { code(r);}
r ∗ n → for (int i=0;i<n;i++) {

code(r);}
}

r ∗ {n, m} → for (int i=0;
i<n1+chooseInt(m-n);i++) {

code(r);
}

< t n >: r → { t n = chooseClass(t);
code(r);}

< t n = f >: r → {t n = f();
code(r);}

< t−m1 − . . .−mk n >: r → { t n;
while (true) {

n = chooseClass(t);
if (n == m 1) continue;
...
if (n == m k) continue;
break;

}
code(r);}

}

Figure 6. Assumption Semantics

Regular expressions are a familiar formal notation to
many developers and our experience is that many find it
easier to use than temporal logics. We also support assump-
tions specified as Linear Temporal Logic (LTL) and gener-
ate Java models using an approach that is similar to the one
developed for Ada modeling in [22].

4 Soundness of Synthesized Environments

In this section, we justify the soundness of synthesized
environments with respect to assumption specifications and
the results of side-effects analyses.

4.1 Preliminaries

Formally, we model the behavior of a concurrent pro-
gram written in Java as alabelled transition system. Cor-
bett shows how to model the behavior of Java [6] programs
as transition systems as defined below, using standard tech-
niques for constructing control flow graphs.

A labelled transition system P is a triple
〈S(V), Act, R〉, where V is a set of typed program
variables, S(V) is the set of states representing valuations
of the variables fromV , Act is an alphabet of actions and
R ⊆ S(V)× Act× S(V) is a transition relation. We write

6

s
a7−→ s′ for (s, a, s′) ∈ R. For a set of variablesW ⊆ V ,

s|W denotes the valuation of variables fromW in states.

States of a system can be regarded as tuples giving the
values of all relevant program variables, including the pro-
gram counter. A transitions

a7−→ s′ says that the system can
evolve from states to states′ by executing actiona. The la-
bels on transitions can represent variable assignments, vari-
able tests, and actions modelling transfer of control to and
from a procedure; parameter passing can be simulated by
communication through common (shared) variables.

We assume that a system isopen, i.e. it can interact with
its environment through shared variables and actions. IfV
is the set of variables for an open system, letV int denote
the set ofinternal (local) variables(that only the system
itself may modify) and letV com denote the set ofcom-
mon (shared) variables, such thatV = V int ∪ V com and
V int ∩ V com = ∅. Also if Act is the set of actions of
the open system, letActint denote the set ofinternal ac-
tions (a symbol representing an internal action of a system
is in the alphabet of only that system) and letActcom de-
note the set ofcommunication (or interface) actions, such
that Act = Actint ∪ Actcom andActint ∩ Actcom = ∅.
A system isclosedif it may not interact with the environ-
ment; a closed system has no shared variables or actions
(i.e. V int = ∅ andActint = ∅).

In order to define the interaction of an open system
with the environment, we first define a parallel composi-
tion of two systems. LetP1 = 〈S(V1), Act1, R1〉 and
P2 = 〈S(V2), Act2, R2〉 be two open systems. We say
that P1 and P2 are compatibleif both their sets of inter-
nal variables and sets of internal actions are disjoint (i.e.
V int

1 ∩ V int
2 = ∅ andActint

1 ∩ Actint
2 = ∅).

Let P1 and P2 be two compatible systems as above.
The compositionof P1 and P2, denotedP1||P2, is an-
other systemP = 〈S(V), Act, R〉, whereV = V1 ∪ V2,
Act = Act1∪Act2, (s, a, s′) ∈ R iff (a 6∈ Acti∧ s|V int

i
=

s′|V int
i

) ∨ (a ∈ Acti ∧ (s|Vi
, a, s′|Vi

) ∈ Ri), i = 1, 2.

The two systems synchronize on the shared actions and
asynchronously interleave all other actions. The internal
variables of systemPi may be modified only by the actions
of systemPi, while the common variables may be modified
by both systems.

An environmentfor systemP is another systemE that is
compatible withP . Note that after completing the system
with a definition of a system representing the environment,
the resulting system (i.e.E||P) is still open, admitting arbi-
trary interference from the environment; once we know that
all the processes/code modelling the environment have been
included, and no further interaction with the external world
is expected, we may “close” systemE||P by declaring all
the shared variables and actions to be internal to the system.

4.2 Data and Control Effects

Our program model is general enough to capture differ-
ent interactions between the system and the environment:
throughshared dataand control (i.e., communication ac-
tions); the model does not directly capture dynamic alloca-
tion of data, so we put a limit to the number of objects that
can flow into the system from the environment.

Our generated environments are eitherdrivers or stubs.
Drivers capture the control influences from the environ-
ment, while the stubs capture the data influences from the
environment.

4.2.1 Simulation and Preservation Results

We proceed to define when a system is asound abstrac-
tion of another one. Abstracting means having less de-
tails while respecting behaviors of the original system. Let
P = 〈S(V), Act, R〉 andP ′ = 〈S(V ′), Act′, R′〉 be two
systems. We say thatP is a sound abstractionof P ′ iff
there is a simulation fromP to P ′.

A simulation[18] from P to P ′ is a pair(ρs, ρa) of re-
lations withρs ⊆ S(V) × S(V ′) andρa ⊆ Act × Act′

such that if(s, s′) ∈ ρs ands
a7−→ t, then there exists some

statet′ ∈ S′ and some actiona′ ∈ Act′ such thats′ a′

7−→ t′,
(t, t′) ∈ ρs and(a, a′) ∈ ρa. We say thatP simulatesP ′,
denotedP � P ′, if there is a simulation fromP to P ′.

When specifying properties of software systems, we use
universal temporal logics, i.e., we reason about properties
that hold along every possible execution path. A standard
result, see e.g. [21], says that simulations preserve satis-
faction of formulas of such logics. I.e., ifP � P ′, then,
for every universal temporal formulaφ, P ′ |= φ implies
P |= φ. However, ifP ′ |= φ does not hold, it does not
mean thatP |= φ is necessarily false (i.e., completeness is
sacrificed).

Our synthesized environments aresound abstractionsof
real environments (see [21, 26]), and model checking a sys-
tem in a synthesized environment is sound. Extending of
the results from [21, 26], we have the following results: (i)
if E � Eabs, thenE||P � Eabs||P , and (ii) if E � Eabs

andP � Pabs, thenE||P � Eabs||Pabs. In other words, it
is safe to check universal temporal properties in the pro-
grams that use the automatically generated environments
since these environments are sound abstractions of real en-
vironments.

5 Experience with BEG

BEG is implemented using the SOOT framework [29].
BEG uses SOOT’s symbol table, control flow graph, and
bytecode representation, Jimple, to perform its analyses;
Jimple is a 3-address SSA-like intermediate form. The tools

7

produce Java code as output that includes calls to the mod-
eling methods introduced in Section sec:GENERATE. This
section describes our experience applying BEG to generate
environments for portions of programs that have appeared
recently in the literature on Java verification. The actual
verification was performed using either JavaPathFinder or
Bandera.

5.1 Case Studies in Environment Generation

We have applied BEG to a variety of examples2. A num-
ber of multi-threaded Java programs that have been the sub-
ject of analysis in literature have been re-verified by gen-
erating the previously hand-built environments with BEG;
the resulting checks are in fact slightly more efficient due
to the atomicity of environment behavior in generated en-
vironments. In addition to the Observer/Observable ex-
ample, these examples include: aProducers/Consumers
framework for exercising a bounded buffer [15];RWVSN,
Lea’s [17] generic readers-writers synchronization frame-
work; and dining philosophers with host, a classic synchro-
nization problem.

While BEG proved to be quite useful in generating envi-
ronments for these small systems, the tool support is much
more valuable when attempting to reason about proper-
ties of larger software systems. An increasingly important
class of object-oriented software systems areframeworks.
Frameworks provide for large-scale reuse of functionality
by collecting threads of control, operations and data struc-
tures that relate to a specific problem domain (e.g., Swing is
a Java framework that supports the development of graphic
user interfaces (GUI)). Frameworks present rich interfaces
that allow application specific processing to be co-ordinated
through the framework. Frameworks are quite difficult to
test due to the complexity of their interfaces and the de-
gree of parameterization that is possible to configure their
behavior. Current state-of-the-practice in framework test-
ing relies on the use of groups of use cases to drive test
case generation. BEG enables the synthesize of drivers that
capture multiple framework use cases and mode state ma-
chines. Furthermore, the use of non-determinism in as-
sumption specifications allows drivers to span configura-
tion settings. This has the great advantage of allowing
configuration-independent properties to be analyzed with-
out having to enumerate combinations of configuration set-
tings.

To explore BEG’s support for analyzing frameworks,
we consider two non-trivial Java programs.Autopilot is
a swing-based GUI for an MD-11 autopilot simulator used
for pilot training at NASA [24]; it is a framework client
application.ReplicatedWorkers [12], is a parameterizable

2The details of all examples are given athttp://www.cis.ksu.
edu/bandera .

parallel job scheduling framework. Since neither of these
programs can be model checked efficiently in combination
with an environment implementation, rather than focus on
measures of time and space required for checking, we de-
scribe how the tools supported the user in performing mod-
ular checking.

5.2 Autopilot

The MD-11 autopilot tutor is a web-based application
that has a graphical user interface (GUI) that simulates the
Autopilot Mode Control Panel and a Primary Flight Dis-
play of an MD-11 aircraft autopilot. A user may click on
buttons to dial desired altitude and vertical speed, and ad-
vance the aircraft towards its goal altitude. Autopilot is im-
plemented as an applet. The application code consists of
more than 3600 lines of code clustered in two main classes.
These measures bely the true complexity of the system as
there is intensive use ofjava.awt and java.swing
GUI frameworks that influences the behavior of the system;
in fact the main thread of control is owned by the frame-
work and application methods are invoked as application
call-backs.

The system was checked formode confusionby encod-
ing a model of a pilot’s understanding of the aircraft state.
Thatmental modelwas integrated with the system to mon-
itor GUI inputs. Assertions were inserted to compare the
state of system data structures with the state of that model;
assertion violations indicated a mismatch between the men-
tal model and the software’s state which implies a potential
mode confusion.

To analyze the system BEG was used to generate stubs
for all the GUI framework components and to generate
drivers that encode regular assumptions about pilot behav-
ior. We restrict our attention here to the generation of the
drivers, for a more complete description see [27].

The main class of the system isAutopilot which ex-
tendsjava.applet.Applet which in turn extends sev-
eralAWTclasses. This applet makes a large number of calls
to AWTmethods in order to create and update the simulated
cockpit displays. The properties we wished to reason about,
however, were independent of the state of the GUI and we
were chose theAutopilot class itself as the unit.

BEG calculated the data effects of theAWTmethods
called from theAutopilot class and generated safe ap-
proximation of the data effects on explicitly defined fields
of Autopilot and on fields inherited fromAWTclasses.

For this system, we found it useful to name the pilot
actions to improve the readability of both the assumption
specifications and generated counter-examples. As shown
in Figure 7, BEG allows one to define mnemonics for GUI
interface actions and to define regular assumptions in terms
of those mnemonics. Model checking theAutopilot

8

environment{
instantiations { 1 User(new Autopilot()); }
definitions {

start=mouseClicked(1); pullAltKnob=mouseClicked(6);
incMCPAlt=mouseClicked(9); incMCPVS=mouseClicked(11);
fly=mouseClicked(14); pilotExp=getExpectation();

}
regular assumptions {

start > incMCPAltˆ{1,10} >
pullAltKnob > (pilotExp > fly)ˆ{1,10} >
incMCPVSˆ{1,10} > (pilotExp > fly)ˆ5 ;

}
}

Figure 7. Autopilot Assumptions

environment {
import ca.replicatedworkers.*;
instantiations {

1 ConcreteWorkCollection; 1 ConcreteWorkItem;
1 ConcreteResultsCollection; 1 ConcreteResultItem;
1 ReplicatedWorkers(

new Configuration(NONE, SYNCH, SOME),
TOP, TOP, 2, 1, 1, 0);

}
regular assumptions {

(putWork(TOP) > execute())* > destroy();
}

}

Figure 8. RWAssumptions

class with the generated environment using JavaPathFinder
produced the following counter-example:

start > incMCPALTˆ2 > pullAltKnob > flyˆ2 > incMCPVS > fly

which indicated a mode confusion anomaly that is possible
in the tutor.

It is interesting to note, that a previous effort to build an
environment for this application required approximately 6
months and yielded an environment model that was incon-
sistent with the actual environment implementation. From
relatively simple specifications, BEG generated an environ-
ment in less than 4 minutes that is guaranteed to be con-
sistent with the implementation, modulo the fidelity of as-
sumption specifications.

5.2.1 Replicated Workers

Replicated Workers (RW) is a configurable frame-
work designed to support the parallelization of simulations.
In previous work [10], we applied largely manual tech-
niques to model check a collection of properties of an Ada
implementation of this framework. Subsequent to that work
the framework was rewritten in Java and has been widely
used [12].

Like most frameworks, replicated workers instances cre-
ate threads internally. Clients control the degree and asyn-
chrony of parallelism in the configuration by passing pa-
rameters to the constructor of the framework instance. The

replicated workers framework makes significant use of in-
terfaces to enable call-backs to the client supplied compu-
tations that are to be parallelized. An environment for the
replicated workers, must define and instantiate classes that
implement each of the interfaces given in the framework
and define appropriate configuration information.

We checked several properties from [10] and were able
to reproduce those results with one difference. When
checked a framework instance under the environment de-
fined in Figure 8 for deadlock, we found an actual dead-
lock. The bug was in the Java implementation of a barrier
synchronization utility. Its discovery was surprising since
the framework has been used in implementing more than
ten non-trivial parallel simulation applications and this bug
was never discovered. We replaced the barrier implemen-
tation with one fromjava.util.concurrent and the
deadlock was eliminated.

6 Related Work

Modular approaches to model checking have been stud-
ied for more than a decade. This work has been carried
out mostly at the theoretical level although there have been
some implementations of game-theoretic approaches to rea-
soning about open systems (e.g., [1]). Our focus is on
capturing the complexities of unit/environment interaction
that arise in real programming language and supporting the
specification and extraction of precise, yet compact envi-
ronment models.

Environment generation from specifications presented in
this paper builds on work of Avrunin et al. [2], who devel-
oped tool support for analyzing partially implemented real-
time systems with some components implemented in Ada
and others described using graphical interval logic and reg-
ular expressions, and our previous work on model checking
of partial software systems in Ada [10, 11, 22]. In addition
to treating Java programs, we support a much richer class of
environment specifications and extract environment models
from existing code.

Another modular approach to checking multithreaded
programs is implemented in Calvin [13]. Their approach is
aimed at procedure checking relying on a user specifications
of environment assumptions that describe other procedures
in the system and constrain interactions among threads. Un-
like in our framework, theirs allows for simple invariant
specifications and requires that programs obey a restricted
class of locking disciplines in interacting.

As complementary to our approach, generation of envi-
ronment assumptions foroptimisticenvironments has been
described in [14, 4] Their work is aimed at finding envi-
ronments within which the unit would satisfy its required
properties. This is an important direction to pursue for mod-
ular program checking, but we also believe that extraction

9

of environments plays an important role when using model
checking as a kind ofunit testingapproach on existing code
bases.

There is a number of examples of applying static analysis
techniques used in modular analysis or verification. Verisoft
incorporates a static analysis to closing of open systems by
calculating the influence of externally defined data [5]. Un-
like in our approach, they use a simple notion of data depen-
dence to drive their analysis and do not have the ability to
control the precision of the generated system. Stoller [25]
describes an approach that computes a partition of a sys-
tem’s inputs based on the data-flow analysis of the system.
The idea is to use a single representative input value from
each partition to exercise all behaviors of the system and
to avoid exercising the same behavior twice. BEG gener-
ates environment values based on the user specification or
the assumption that the environment data is to be abstracted
before model checking phase. Rountev et al. [23] explore
how points-to and side-effects analyses may be used to pro-
ducesummariesfor library modules that later may be used
for separate analysis of client modules. Unlike in our work,
their summries are produced using whole program analysis
under the worst-case assumptions about a client and are tar-
geted at the optimizations of the client. Our analyses are
modular and explore the information about the unit, if there
are call backs from the environment.

7 Conclusions

Despite the significant computational complexity of
model checking, it has proven effective as an analysis tech-
nique that is capable of finding errors in real concurrent
Java programs (e.g., the Replicated Workers framework).
Modular approaches promise to further scale the application
of model checking to software. The Bandera Environment
Generator (BEG) provides automated tool support that has
proven effective in enabling useful forms of modular analy-
sis.

We are continuing development of the foundations for
BEG as well as the tool support. Specifically, we are work-
ing on analysis of program lock acquisition to safely ap-
proximate the synchronization interaction between the envi-
ronment and unit. In addition, we are adapting thread mod-
ular approaches [13] to enable model checking for arbitrary
numbers of environment threads. BEG is being released as
part of the Bandera toolset athttp://www.cis.ksu.
edu/bandera .

8 Acknowledgments

The authors would like to thank the members of the Bandera and JPF
projects for many helpful discussions and comments related to this work.
This work was supported in part by the U.S. Army Research Laboratory

and the U.S. Army Research Office under agreement DAAD190110564,
by DARPA/IXO’s PCES program through AFRL Contract F33615-00-C-
3044, and by Intel Corporation under grant 11462.

References

[1] R. Alur, L. de Alfaro, R. Grosu, T. A. Henzinger, M. Kang, C. M.
Kirsch, R. Majumdar, F. Mang, and B.-Y. Wang. jmocha: A model-
checking tool that exploits design structure. InProceedings of the
23rd Annual IEEE/ACM International Conference on Software En-
gineering, pages pp. 835–836. IEEE Computer Society Press, 2001.

[2] G. S. Avrunin, J. C. Corbett, and L. Dillon. Analyzing partially-
implemented real-time systems. InProceedings of the 19th Interna-
tional Conference on Software Engineering, pages 228–238, 1997.

[3] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic
predicate abstraction of C programs. InProceedings of the ACM
SIGPLAN ’01 Conference on Programming Language Design and
Implementation (PLDI-01), volume 36.5 ofACM SIGPLAN Notices,
pages 203–213. ACMPress, June 20–22 2001.

[4] J. M. Cobleigh, D. Giannakopoulou, and C. S. Păs̆areanu. Learning
assumptions for compositional verification. InTools and Algorithms
for the Construction and Analysis of Systems, 9th International Con-
ference (LNCS 2619), Apr. 2003.

[5] C. Colby, P. Godefroid, and L. J. Jagadeesan. Automatically closing
open reactive programs. InSIGPLAN Conference on Programming
Language Design and Implementation, pages 345–357, 1998.

[6] J. C. Corbett. Constructing compact models of concurrent Java pro-
grams. In M. Young, editor,Proceedings of the 1998 International
Symposium on Software Testing and Analysis (ISSTA). ACM Press,
March 1998.

[7] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păs̆areanu,
Robby, and H. Zheng. Bandera : Extracting finite-state models from
Java source code. InProceedings of the 22nd International Confer-
ence on Software Engineering, June 2000.

[8] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. Expressing
checkable properties of dynamic systems: The bandera specification
language. International Journal on Software Tools for Technology
Transfer, 4(1):34–56, 2002.

[9] M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S. Păs̆areanu,
Robby, W. Visser, and H. Zheng. Tool-supported program abstraction
for finite-state verification. InProceedings of the 23rd International
Conference on Software Engineering, May 2001.

[10] M. B. Dwyer and C. S. P̆as̆areanu. Filter-based model checking of
partial systems. InProceedings of the Sixth ACM SIGSOFT Sympo-
sium on Foundations of Software Engineering, Nov. 1998.

[11] M. B. Dwyer and C. S. P̆as̆areanu. Model checking generic container
implementations. InProceedings of the 1st Symposium on Generic
Programming, May 1998.

[12] M. B. Dwyer and V. Wallentine. A framework for parallel adap-
tive grid simulations. Concurrency - Practice and Experience,
9(11):1293–1310, 1997.

[13] C. Flanagan and S. Qadeer. Thread modular model checking. In
Model Checking Software (LNCS 2648), May 2003.

[14] D. Giannakopoulou, C. S. Pasareanu, and H. Barringer. Assumption
generation for software component verification. InProceedings of
the 17th IEEE Conference on Automated Software Engineering, May
2002.

[15] K. Havelund and T. Pressburger. Model checking Java programs us-
ing Java PathFinder.International Journal on Software Tools for
Technology Transfer, 1999.

10

[16] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstrac-
tion. In Proceedings of the 29th ACM Symposium on Principles of
Programming Languages, pages 58–70, Jan. 2002.

[17] D. Lea.Concurrent Programming in Java[tm], Second Edition: De-
sign principles and Patterns. The Java Series. Addison-Wesley, 2nd
edition, 1999.

[18] R. Milner. Communication and Concurrecy. Prentice Hall, 1989.

[19] J. Penix, W. Visser, E. Engstrom, A. Larson, and N. Weininger. Veri-
fication of time partitioning in the deos scheduler kernel. InProceed-
ings of the 22nd International Conference on Software Engineering,
June 2000.

[20] C. S. P̆as̆areanu. Deos kernel: Environment modeling using ltl
assumptions. Technical Report Technical Report NASA-ARC-IC-
2000-196, NASA Ames, 2000.

[21] C. S. P̆as̆areanu.Abstraction and Modular Reasoning for the Verifi-
cation of Software. PhD thesis, Kansas State University, 2001.

[22] C. S. P̆as̆areanu, M. B. Dwyer, and M. Huth. Assume-guarantee
model checking of software : A comparative case study. InTheo-
retical and Applied Aspects of SPIN Model Checking (LNCS 16 80),
Sept. 1999.

[23] A. Rountev and B. G. Ryder. Points-to and side-effect analyses for
programs built with precompiled libraries. InProceedings of the 10th
International Conference on Compiler Construction (CC’01), 2001.

[24] L. Sherry, M. Feary, P. Polson, and E. Palmer. Autopilot tutor: Build-
ing and maintaining autopilot skills.

[25] S. D. Stoller. Domain partitioning for open reactive systems. In
Proceedings of the international symposium on Software testing and
analysis, pages 44–54. ACM Press, 2002.

[26] O. Tkachuk. Adapting side effects analysis for modular program
model checking. Master’s thesis, Kansas State University, 2003.

[27] O. Tkachuk, G. Brat, and W. Visser. Using code level model checking
to discover automation surprises. InProceedings of the 2002 Digital
Avionics Systems Conference, 2002.

[28] O. Tkachuk and M. B. Dwyer. Adapting side effects analysis for
modular program model checking. InProceedings of the Fourth joint
meeting of the European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engineering,
Sept. 2003.

[29] R. Valle-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and
P. Co. Soot - a Java optimization framework. InProceedings of
CASCON’99, Nov. 1999.

[30] W. Visser, K. Havelund, G. Brat, , and S. Park. Model checking pro-
grams. InProceedings of the 15th IEEE Conference on Automated
Software Engineering, Sept. 2000.

11

